Bilangan Asli Dalam matematika

1.Bilangan asli:Dalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, …}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, …}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb.

Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan bilangan prima, dipelajari dalam teori bilangan. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat hitungan suatu himpunan.Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yg tak bisa tertangkap oleh indra manusia, tetapi bersifat universal. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui aksioma PeanoDalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, …}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, …}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan bilangan prima, dipelajari dalam teori bilangan. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat hitungan suatu himpunan.Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yg tak bisa tertangkap oleh indra manusia, tetapi bersifat universal. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui aksioma Peanodefinisi dari himpunan bilangan asli , dilambangkan . Dari aksioma- aksioma ini, aritmatika Peano pada bilangan asli dapat diturunkan. (0 adalah bilangan asli)Untuk setiap , ada tepat satu , yang disebut penerus (0 bukan penerus bilangan asli mana pun)jika dan hanya jika ( aksioma induksi ) Jika dan dan menyiratkan , maka .Penerus kadang – kadang dilambangkan sebagai ganti . Aritmatika kacang terdiri dari pernyataan yang diturunkan melalui aksioma ini. Misalnya, dari aksioma ini kita dapat mendefinisikan penjumlahan dan perkalian pada bilangan asli. Penambahan didefinisikan sebagai gayatampilan untuk semuaPenjumlahan yang didefinisikan dengan cara ini kemudian dapat dibuktikan baik asosiatif maupun komutatif .Perkalian adalah tampilan untuk semuaDefinisi perkalian ini juga dapat dibuktikan asosiatif dan komutatif, dan juga dapat ditunjukkan distributif terhadap

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *